TRITERPENE GLYCOSIDES FROM Kalopanax septemlobum.

IV. GLYCOSIDE COMPOSITION OF FRUIT FROM

PLANTS INTRODUCED INTO CRIMEA

D. A. Panov and V. I. Grishkovets

UDC 547.918

The present communication describes the isolation and identification of triterpene glycosides from fruit of *Kalopanax septemlobum* (Thunb.) Koidz. var. *typicum* (Nakai) Pojark. [1] that was introduced into Crimea (Nikitskii Botanical Garden). The glycoside composition of fruit from *K. septemlobum* has not been previously studied. Preparative TLC showed substantial qualitative differences in the glycoside composition of the pericarp and seeds.

Air-dried fruit (20 g) was separated into seeds (2.3 g) and pericarp (17.7 g) for glycoside isolation. Glycosides were isolated from individually selected seeds and pericarp by the usual method [2] that includes thorough grinding, defatting, and extraction of total glycosides by isopropanol (80%). Raw total glycosides were obtained from pericarp (1.8 g) and seeds (0.1 g). Glycosides were separated by chromatography on silica gel (L 40-100 μ m) with gradient elution by water-saturated CHCl₃:(CH₃)₂CHOH (10:1 \rightarrow 1:1). Separation of total glycosides from pericarp eluted successively glycosides **1** (10 mg), **2** (80 mg), **3** (7 mg), **4** (90 mg), **5** (70 mg), and **6** (65 mg); of total glycosides from seeds, **2** (10 mg), **7** (20 mg), **8**, (5 mg), **9** (60 mg), **5** (20 mg), **10** (7 mg), and **6** (3 mg). Glycosides **1-8** and **10** were identified by TLC in various solvent systems as known glycosides that we isolated previously from leaves and fruit of *Hedera taurica* [3] and from leaves of *K. septemlobum* [2], by acid and alkaline hydrolysis, and by comparing their NMR spectra with those in the literature [2, 3].

R_1	R_2	R_3
1: α -L-Rha $p \rightarrow^2 \alpha$ -L-Ara $p \rightarrow$	Н	Н
2: α -L-Rha $p \rightarrow^2 \alpha$ -L-Ara $p \rightarrow$	OH	Н
3: β -D-Xyl $p \rightarrow^3 \alpha$ -L-Rha $p \rightarrow^2 \alpha$ -L-Ara $p \rightarrow$	ОН	Н
4: α -L-Rha $p \rightarrow^2 \alpha$ -L-Ara $p \rightarrow$	Н	$\leftarrow \beta$ -D-Glc $p^6 \leftarrow \beta$ -D-Glc $p^4 \leftarrow \alpha$ -L-Rha p
5: α -L-Rha $p \rightarrow^2 \alpha$ -L-Ara $p \rightarrow$	OH	$\leftarrow \beta$ -D-Glc $p^6 \leftarrow \beta$ -D-Glc $p^4 \leftarrow \alpha$ -L-Rha p
6: β -D-Xyl $p \rightarrow {}^{3}\alpha$ -L-Rha $p \rightarrow {}^{2}\alpha$ -L-Ara $p \rightarrow$	OH	$\leftarrow \beta$ -D-Glc $p^6 \leftarrow \beta$ -D-Glc $p^4 \leftarrow \alpha$ -L-Rha p
7: β -D-Glc p →	Н	Н
8: β -D-Glc $p \rightarrow^2 \beta$ -D-Glc $p \rightarrow$	Н	Н
9: β -D-Glc p \rightarrow	Н	$\leftarrow \beta$ -D-Glc $p^6 \leftarrow \beta$ -D-Glc p
10: β -D-Glc $p \rightarrow^2 \beta$ -D-Glc $p \rightarrow$	H	$\leftarrow \beta$ -D-Glc $p^6 \leftarrow \beta$ -D-Glc p

V. I. Vernadskii Tauric State University, 95007, Ukraine, Simferopol', prospekt Vernadskogo, 4, e-mail: vladgri@ukr.net. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 388-389, July-August, 2005. Original article submitted March 22, 2005.

Glycoside **9** was not identified as any known glycoside. Total acid hydrolysis of **9** showed the presence of oleanolic acid and glucose. Alkaline hydrolysis of **9** gave **7**. A comparison of the chromatographic mobility of **9** with that of **10** led to the conclusion that **9** contained three glucose units. The results of alkaline hydrolysis indicated that the disaccharide $Glu \rightarrow Glu \rightarrow was$ located on the carboxyl in **9**. Treatment of **9** with emulsin (β -glucosidase from Rosales seeds, KF 3.2.1.21), which specifically cleaves a β -(1 \rightarrow 6)-glycoside bond between glucose units, cleaved this glycoside (TLC monitoring) and confirmed the presence of a 1 \rightarrow 6 bond (gentiobiose unit). The ¹³C NMR spectrum of **9** confirmed the hypotheses because signals for the β -gentiobiose bound to the aglycon by an acylglycoside bond, for one β -glucopyranose bonded to aglycon C-3, and for the 3,28-disubstituted oleanolic acid algycon were readily identified. Thus, **9** is the 3-O- β -D-glucopyranosyl-28-O- β -gentiobiosyl ester of oleanolic acid. This glycoside was isolated previously only from *Clematis montana* (Ranunculaceae) [5].

REFERENCES

- 1. Trees and Shrubs of the USSR. Wild, Cultivated, and Promising for Introduction [in Russian], in five vols., Izd. Akad. Nauk SSSR, Moscow-Leningrad (1960), Vol. 5: Angiosperms. Myrtaceae-Oleaceae Families.
- 2. V. I. Grishkovets, D. A. Panov, V. V. Kachala, and A. S. Shashkov, Khim. Prir. Soedin., 156 (2005).
- 3. A. A. Loloiko, V. I. Grishkovets, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 379 (1988); V. I. Grishkovets, N. V. Tolkacheva, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 522 (1992).
- A. A. Loloiko, V. I. Grishkovets, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 228 (1990);
 V. I. Grishkovets, A. A. Loloiko, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 779 (1990).
- 5. R. P. Thapliyal and R. P. Bahuguna, *Int. J. Pharmacogn.*, **32**, 373 (1994).